If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(3x^2)-6x=0
a = 3; b = -6; c = 0;
Δ = b2-4ac
Δ = -62-4·3·0
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-6}{2*3}=\frac{0}{6} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+6}{2*3}=\frac{12}{6} =2 $
| 3x^-1+0.5x-3.5=0 | | n/10–-37= 38 | | 3(-2x+1)-((3x+1)/2)=((4(-3x+1x))/2)+2(3x+1) | | 41=11x-23 | | 20+3r=56 | | 139=11x-23 | | 22-3q=13 | | 11x-23=139 | | 22–3q=13 | | 11x-23=41 | | (b+5)(b+8)=0 | | x−3/7=4 | | c3– 1= 1 | | (x-1)(x+5)(x+8)(x+2)-880=0 | | 4y=(y-7) | | 24+6k=6(-4-k) | | (6a-7)^2=68 | | 13=4+3h | | 3(x-6)-6(x-3)=x+9-(x-9) | | 7x+49=497 | | 2p=(p-6) | | 3840=(100+5x)(40-2x) | | 2b-9=5b+6 | | 8s=3(12-7s)=49 | | x/4+4x=150 | | 4x+4x^2-3=0 | | (d+1³)=64 | | 5x+65=105 | | 3=x+4=9 | | (X+3)^2-(2x-1)^2=0 | | 4x(23-3)+6/2=x | | 4x+24=284 |